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Department of Physics, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113, Japan

Received 3 December 1996, in final form 14 March 1997

Abstract. Elementary excitations in the one-dimensional Hubbard model with boundaries are
discussed at the half-filling and without external magnetic fields. The energy of the present
model is evaluated in the low-lying excited state, where there exist quasiparticles corresponding
to elementary excitations in the charge and the spin sectors. The boundary scattering matrix of
the quasiparticles is evaluated.

1. Introduction

Recently, exactly solvable models with boundaries have attracted much attention. The one-
dimensional Hubbard model with boundary fields is one of such strongly correlated systems.
Schulz [1] has exactly diagonalized the Hubbard model with free boundaries by using the
Bethe ansatz method. The present authors [2] derived the Bethe ansatz equation of the
Hubbard open chain with a boundary field. Afterwards, several authors derived the Bethe
ansatz equations with other boundary fields [3–5]. The physical properties of the Hubbard
model with boundaries have been studied using the Bethe ansatz equations thus obtained.
The finite-size scaling technique based on the boundary conformal field theory has enabled
us to investigate critical behaviours of the present model with boundary fields [2–4] (see
also [6]). The present authors have also evaluated the boundary contributions to physical
quantities in the repulsive and the attractive Hubbard models with boundaries [7, 8]. In this
paper, we discuss the elementary excitations in the Hubbard model on the open chain.

We study the present model at the half-filling without external magnetic fields in the
bulk, which is described by the following Hamiltonian,

H(u) = −
L−1∑
j=1

∑
σ=±

(c
†
jσ cj+1σ + c†j+1σ cjσ )+ 4u

L∑
j=1

(nj+ − 1
2)(nj− − 1

2)+Hb (1.1)

wherec†jσ (cjσ ) denotes a fermionic creation (annihilation) operator at the sitej with the

spin σ , andnjσ = c†jσ cjσ denotes the number operator of the fermion. We take an even
integer asL, which denotes the length of the open chain. The symbolHb corresponds to
the boundary terms and takes the forms

Hb =
{
−p1(n1+ + n1− − 1)− pL(nL+ + nL− − 1) for case A

−p1(n1+ − n1−)− pL(nL+ − nL−) for case B.
(1.2)
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The energy of the present model is given by [2–5]

E =
N∑
j=1

(−2u− 2 coskj )+ uL+ e(p1)+ e(pL) (1.3)

with

eikj2(L+1)Z(kj ;p1, pL) =
M∏
β=1

sinkj − λβ + iu

sinkj − λβ − iu

sinkj + λβ + iu

sinkj + λβ − iu
(1.4)

N∏
l=1

λα − sinkl + iu

λα − sinkl − iu

λα + sinkl + iu

λα + sinkl − iu

= Y (λα;p1, pL)

M∏
β=1
(β 6=α)

λα − λβ + i2u

λα − λβ − i2u

λα + λβ + i2u

λα + λβ − i2u
(1.5)

for j = 1, . . . , N andα = 1, . . . ,M, whereN (or M) denotes the number of the fermions
(or the fermions with down spins), ande(p) takesp (or 0) for case A (or case B). Here,
we defineZ(kj ;p1, pL) andY (λα;p1, pL) by

Z(k;p1, pL) = ζ(k;p1)ζ(k;pL) for cases A, B ζ(k;p) = 1− pe−ikj

1− peikj
(1.6)

Y (λ;p1, pL) =
{

1 for case A

η(λ;p1)η(λ;pL) for case B

η(λ;p) = −λ+ i(u+ 1
2(p
−1− p))

λ− i(u+ 1
2(p
−1− p)) .

(1.7)

(In [2], the present authors have derived the Bethe ansatz equation for case A. One of the
present authors (HA) [5] has derived the Bethe ansatz equation for case B from the equation
for case A.)

We mainly discuss the case without the boundary fields (p1 = pL = 0), i.e.Hb = 0.
In this case, the Hamiltonian (1.1) (withHb = 0) is invariant under aSO(4) = SU(2) ×
SU(2)/Z2 transformation, similarly to the periodic-boundary case [9]. Namely, all the
following six generators

S =
L∑
j=1

c
†
j+cj− S† =

L∑
j=1

c
†
j−cj+ S3 =

L∑
j=1

1
2(nj− − nj+) (1.8)

T =
L∑
j=1

(−1)j cj+cj− T † =
L∑
j=1

(−1)j c†j−c
†
j+ T 3 =

L∑
j=1

1
2(nj+ + nj− − 1) (1.9)

commute with the HamiltonianH(u) with Hb = 0. The Z2 quotient corresponds to
the fact that the operatorS3+ T 3 only has integer eigenvalues and all half-odd integer
representations of theSU(2) × SU(2) are projected out, asL is even. Similarly to the
periodic-boundary case, the partial particle–hole transformation

cj+ −→ (−1)j c†j+ cj− −→ cj− (1.10)

yields the changeH(u)→ H(−u) at the ‘SO(4) point’ (i.e. forHb = 0) and interchanges
the charge and the spin degrees of freedom. Indeed, this transformation interchanges the
spin-SU(2) generators{S, S†, S3} and the charge-SU(2) generators{T , T †, T 3}.
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The elementary excitations in the Hubbard model with theperiodic boundary condition
have been discussed by many authors, e.g. [10–14], using the Bethe ansatz equation for the
periodic Hubbard chain [10]. First, Lieb and Wu [10] showed that the repulsive Hubbard
model at half-filling without magnetic field was an insulator for all positive values ofu.
Woynarovich [11] gave a detailed analysis of spin and charge excitations in the repulsive
and the attractive Hubbard models. Klümperet al [12] rederived Woynarovich’s result [11]
using another method. Essler and Korepin [13] determined the two-particle scattering matrix
for the elementary excitations. (Andrei [14] also discussed the scattering matrix.) These
investigations have clarified the properties of the elementary excitations in the Hubbard
model with theSO(4) symmetry; (1) in the repulsive Hubbard model, charge and spin
excitations are massive and massless, respectively. (2) In the attractive Hubbard model,
spin and charge excitations are massive and massless, respectively. (3) In both the repulsive
and the attractive cases, the excitation spectrum is built out of four elementary excitations
(i.e. quasiparticles), which form the fundamental representation ofSU(2)× SU(2). Two of
these elementary excitations carry spin but no charge, and two carry charge but no spin.

In this paper, we have two aims. One of them is to derive the low-lying excited energy of
the Hubbard open chain with theSO(4) symmetry, where there exist several quasiparticles
corresponding to elementary excitations in the charge and spin sectors. Woynarovich [11]
has derived the low-lying excited energy with several quasiparticles for the periodic Hubbard
chain (see also [12]). We extend his method [11] to derive the corresponding energy under
the open boundary condition (sections 3.1, 3.2). As preliminaries for this calculation we
have to discuss properties of the solutions in the Bethe ansatz equations (1.4) and (1.5) for
the Hubbard model with boundaries (section 2).

The other aim is to derive the boundary scattering matrices for the quasiparticles of the
Hubbard open chain with theSO(4) symmetry (sections 4.1, 4.2).

Such boundary scattering matrices, which describe the phase shifts in the scattering
of physical excitations at boundaries, have been evaluated in other models, e.g. [15–17].
Fendley and Saleur [15] and Grisaruet al [16] have derived the boundary scattering matrix
for the Heisenberg open chain directly from the Bethe ansatz equation. Essler [17] has
derived the scattering matrix for the supersymmetrict-J model, using Grisaruet al’s method
[16]. Grisaru et al’s method [16] is based on the following quantization condition for
factorized scattering of two particles with rapiditiesλ1 andλ2 on a line of lengthL̄,

exp(ip(λ1)2L̄)S12(λ1− λ2)K
L
1 (λ1)S12(λ1+ λ2)K

R
1 (λ1) = 1. (1.11)

This condition comes from the requirement that the wavefunction should vanish at both ends
of the line [15, 16]. Here, we describe the physical energy and the physical momentum of
a ‘dressed’ particle (i.e. quasiparticle) with a rapidityλ by the symbolsε(λ) and p(λ).
(We have to definep(λ) by the physical momentum of the corresponding (infinite) periodic
system [15, 16].) The symbolS12(λ) denotes the bulk scattering matrix of the particles
labelled by ‘1’ and ‘2’. The symbolKL(R)

1 (λ) denotes the boundary scattering matrix
describing the scattering off a boundary at the left (right) end. When the scattering matrices
S12, KL(R)

1 are proportional to the identity matrix, we can introduce phase shiftsψ12, φL(R)
1

by

S12(λ) = eiψ12(λ) K
L(R)
1 (λ) = eiφL(R)

1 (λ) (1.12)

(up to a rapidity-independent phase factor) to have the relationship

2L̄p(λ1)+ ψ12(λ1− λ2)+ φL
1 (λ1)+ ψ12(λ1+ λ2)+ φR

1 (λ1) = 0 (mod 2π) (1.13)

apart from a rapidity-independent additive constant. For models on a one-dimensional
lattice with L sites, we should takeL+ 1 asL̄. (For the free-fermion model, since each
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of the phase shiftsψ12, φL(R)
1 is equal to zero, this relationship yieldsp = πn/(L+ 1)

(n = 1, . . . , L). Indeed, the quantization condition for the free-fermion model on the open
chain withL sites is given not byp = πn/L but byp = πn/(L+ 1).)

The quantization condition (1.11), i.e. (1.13), enables us to drive the boundary scattering
matrix for the elementary excitations from the Bethe ansatz equation of the Hubbard model
with boundaries. For detailed discussions, see sections 4.1 and 4.2.

2. Properties of the solutions for the Bethe ansatz equation of the Hubbard model
with boundaries

In this section, we discuss properties of the solutions for the Bethe ansatz equations (1.4)
and (1.5), as preliminaries for sections 3.1 and 3.2. The purpose of this section is to derive
the ‘complementary solutions’ for the Bethe ansatz equations of the Hubbard model with
boundaries. (Woynarovich [11] has derived the complementary solutions for the periodic-
boundary case.)

If we require that solutions{kj , λα} (j = 1, . . . , N , α = 1, . . . ,M) for the Bethe ansatz
equations correspond to independent Bethe ansatz states, we can make the restrictions
−π

2 < argkj 6 π
2 with kj 6= 0, π , and−π

2 < argλα 6 π
2 with λα 6= 0. We also have to

identify kj + 2π askj (see [1, 2]).
Then,−kj and−λα also satisfy equations (1.4) and (1.5). If we definek−j andλ−α as

−kj and−λα (j = 1, . . . , N , α = 1, . . . ,M), respectively, we have the relationships

eik2(L+1)Z(kj ;p1, pL) =
±M∏
β=±1

sinkj − λβ + iu

sinkj − λβ − iu
(2.1)

±N∏
l=±1

λα − sinkl + iu

λα − sinkl − iu
= Y (λα;p1, pL)

(
−λα + iu

λα − iu

)−1 ±M∏
β=±1

λα − λβ + i2u

λα − λβ − i2u

j = ±1, . . . ,±N α = ±1, . . . ,±M. (2.2)

For a fixed set{λα} (α = ±1, . . . ,±M), we can rewrite equation (2.1) as

P(x) = 0 (2.3)

P(x) ≡ x2L(x − p1)(x − pL)
±M∏
β=±1

(x2− 2i(λβ + iu)x − 1)

−(1− p1x)(1− pLx)
±M∏
β=±1

(x2− 2i(λβ − iu)x − 1) (2.4)

with x = eikj . Then we can recognize{eikj } (j = ±1, . . . ,±N ) as 2N of 2L+ 4M + 2 roots
for equation (2.3). We can check that ei0 (i.e. 1) and eiπ (i.e.−1) are also the roots of the
equation. We can also check that the relationP(x) = −x2L+4M+2P(x−1) holds. Therefore,
if x is a root of equation (2.3),x−1 is also a root of the equation. Now we parametrize
the rest of the roots by{eik̃j } for j = ±1, . . . ,±N ′ (N ′ ≡ L+ 2M −N ) with k̃−j = −k̃j
for j = 1, . . . , N ′. (Here, we can recognize that the elements of{eik̃j } with j = 1, . . . , N ′

live on the half of the complex plane with−π
2 < argk̃j 6 π

2 .) We call these roots{k̃j }
(j = ±1, . . . ,±N ′) complementary solutions. By definition, the following relationships
among{k̃j } (j = ±1 . . .±N ′) and{λα} (α = ±1 . . .±M) hold,

eik̃2(L+1)Z(k̃j ;p1, pL) =
±M∏
β=±1

sink̃j − λβ + iu

sink̃j − λβ − iu
. (2.5)
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Introducing the parametersxj ≡ eikj (j = ±1, . . . ,±N ) and x̃j ≡ eik̃j (j = ±1, . . . ,±N ′),
we can rewrite equation (2.2) as
±N∑
l=±1

1

i
ln
x2
l − 2i(λα − iu)xl − 1

x2
l − 2i(λα + iu)xl − 1

= −1

i
lnY (λα;p1, pL)+ 1

i
ln

(
−λα + iu

λα − iu

)

−
±M∑
β=±1

1

i
ln
λα − λβ + i2u

λα − λβ − i2u
(mod 2π). (2.6)

The left-hand side of this equation can be transformed as follows,
±N∑
l=±1

∮
Cl

dz

2π i

1

i
ln
z2− 2i(λα − iu)z − 1

z2− 2i(λα + iu)z − 1

d

dz
lnP(z) = −2

i
ln
λ− iu

λ+ iu

−
±N∑
l=±1

1

i
ln
x̃2
l − 2i(λα − iu)x̃l − 1

x̃2
l − 2i(λα + iu)x̃l − 1

− 1

i
ln η(λα;p1)η(λα;pL)

+
±M∑
β=±1

2

i
ln
λα − λβ − i2u

λα − λβ + i2u
(mod 2π) (2.7)

where the symbolCl denotes the contour which encirclesz = xl in the complex plane. In
this calculation, we have deformed the contours{Cl} (l = ±1, . . .±N ) to encircle{z = x̃l}
(l = ±1, . . .±N ′), z = ±1 and the branch cuts of the integrand. Then, we arrive at the
following relationships among{k̃j } (j = ±1 . . .±N ′) and{λα} (α = ±1 . . .±M),
±N ′∏
l=±1

λα − sink̃l + iu

λα − sink̃l − iu
= Y̌ (λα;p1, pL)

(
−λα + iu

λα − iu

)−1 ±M∏
β=±1

λα − λβ + i2u

λα − λβ − i2u
(2.8)

where

Y̌ (λ;p1, pL) =
{
η(λ;p1)η(λ;pL) for case A

1 for case B.
(2.9)

Through the above discussions, we have obtained the following relationships among the
roots{kj } (j = 1, . . . , N), {k̃j } (j = 1, . . . , N ′) and{λα} (α = 1, . . . ,M),

eikj2(L+1)Z(kj ;p1, pL) =
M∏
β=1

sinkj − λβ + iu

sinkj − λβ − iu

sinkj + λβ + iu

sinkj + λβ − iu
(2.10)

eik̃j2(L+1)Z(k̃j ;p1, pL) =
M∏
β=1

sink̃j − λβ + iu

sink̃j − λβ − iu

sink̃j + λβ + iu

sink̃j + λβ − iu
(2.11)

N∏
l=1

λα − sinkl + iu

λα − sinkl − iu

λα + sinkl + iu

λα + sinkl − iu
= Y (λα;p1, pL)

M∏
β=1
(β 6=α)

λα − λβ + i2u

λα − λβ − i2u

λα + λβ + i2u

λα + λβ − i2u

(2.12)
N ′∏
l=1

λα − sink̃l + iu

λα − sink̃l − iu

λα + sink̃l + iu

λα + sink̃l − iu
= Y̌ (λα;p1, pL)

M∏
β=1
(β 6=α)

λα − λβ + i2u

λα − λβ − i2u

λα + λβ + i2u

λα + λβ − i2u

(2.13)

where we have removed the restrictions for the arguments of the roots in these expressions.
In the following sections, we only discuss the case withp1 = pL = 0, where the

Hubbard model has theSO(4) symmetry. For this case,Z = Y = Y̌ = 1 holds.
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3. Low-lying excited energy in the Hubbard open chain at theSO(4) point

3.1. Repulsive Hubbard model

In this section, we derive the energy in the low-lying excited state in the repulsive
(u > 0) Hubbard open chain with theSO(4) symmetry. Our approach is an extension
of Woynarovich’s method [11] by which the low-lying excited spectrum in the periodic-
boundary case has been discussed.

In our calculations, we use the roots{kj }, {k̃j } and {λα} of equations (2.10)–(2.13)
with Z = Y = Y̌ = 1. We assume that we can make the restrictions 0< Rekj < π ,
0< Rek̃j < π and 0< Reλα for the roots of the equations which give the rapidities of
independent Bethe ansatz states.

As far as we consider low-lying excited states above the ground state, 2M of the possible
L+ 2M values{kj } and {k̃j ′ } (j = 1, . . . , N , j ′ = 1, . . . , N ′) can be expected to take the
form

sink±α = λα ∓ iu+O(e−δL) ± Im k±α > 0(∃δ > 0) (3.1)

similarly to the periodic-boundary case [11]. Indeed, we can check thatk±α satisfy
equations (2.10) and (2.11) (withZ = 1). In this section we use the symbolλα, to describe
only those elements in{λα} which are associated with complexk̃j ’s by the relation (3.1).
The other elements of the set{λα}, which are associated with complexkj ’s, are described
by the symbol3α. We assume that the other elements in{kj } (j = 1, . . . , N) and {k̃j }
(j = 1, . . . , N ′) are real. Hereafter, we describe only the real elements by the symbolskj

and k̃j . Therefore, the total number of the real values,kj ’s and k̃j ’s, is equal toL.
Then, we can obtain the following equations for the redefined parameters{kj }, {k̃j },

{λα} and{3α},

eikj2(L+1) =
∏
β

sinkj − λβ + iu

sinkj − λβ − iu

sinkj + λβ + iu

sinkj + λβ − iu

∏
β

sinkj −3β + iu

sinkj −3β − iu

sinkj +3β + iu

sinkj +3β − iu

(3.2)

eik̃j2(L+1) =
∏
β

sink̃j − λβ + iu

sink̃j − λβ − iu

sink̃j + λβ + iu

sink̃j + λβ − iu

∏
β

sink̃j −3β + iu

sink̃j −3β − iu

sink̃j +3β + iu

sink̃j +3β − iu

(3.3)∏
l

λα − sinkl + iu

λα − sinkl − iu

λα + sinkl + iu

λα + sinkl − iu
=

∏
β(6=α)

λα − λβ + i2u

λα − λβ − i2u

λα + λβ + i2u

λα + λβ − i2u
(3.4)

∏
l

3α − sink̃l + iu

3α − sink̃l − iu

3α + sink̃l + iu

3α + sink̃l − iu
=

∏
β(6=α)

3α −3β + i2u

3α −3β − i2u

3α +3β + i2u

3α +3β − i2u
(3.5)

apart from corrections of order e−δL(∃δ > 0).
In the ground state of the repulsive Hubbard model at the half-filling without the

magnetic field, the numbers of the elements{kj }, {k̃j }, {λα} and {3α} areL, 0, L/2 and
0, respectively, and all the elements of{λα} are real. We consider the excitation above the
ground state.

In accordance with the procedure for the periodic-boundary case [11, 12], we introduce
several parameters. By the symbols{λh

α}, we describe the positions of the holes in the
distribution of the real elements of{λα}. We also introduce auxiliary variables{χµ} which
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generate the complex (i.e. not real) elements of{λα} in the following way,

λµ =
{
χµ ± iu for |χµ| < u

χµ + sign(Imχµ)iu for |χµ| > u.
(3.6)

Since{k̃j } behaves like the holes in the distribution of{kj }, we describe{k̃j } by the symbols
{kh
j }. Then, using equations (3.4) and (3.5), we can derive the following equations

H s+2Ls∏
β=1

χµ − λh
β + iu

χµ − λh
β − iu

χµ + λh
β + iu

χµ + λh
β − iu

=
Ls∏
ν=1
(ν 6=µ)

χµ − χν + i2u

χµ − χν − i2u

χµ + χν + i2u

χµ + χν − i2u
(3.7)

H c+2Lc∏
l=1

3α − sinkh
l + iu

3α − sinkh
l − iu

3α + sinkh
l + iu

3α + sinkh
l − iu

=
Lc∏
β=1
(β 6=α)

3α −3β + i2u

3α −3β − i2u

3α +3β + i2u

3α +3β − i2u
. (3.8)

Here, the number of the elements{λh
α} is equal toH s+ 2Ls, whereH s ≡ N − 2M andLs

denotes the number of{χµ}, and the number of the elements{kh
j } is equal toH c+ 2Lc,

whereH c ≡ L−N andLc denotes the number of{3α}. (Refer to the periodic-boundary
case [11, 12].) As far asH c+ 2Lc andH s+ 2Ls are much less thanL, the positions of the
holes{kh

j } and{λh
α} can be recognized as free parameters, similarly to the periodic-boundary

case [11, 12]. Once equations (3.7) and (3.8) are solved, the distribution of{kj } and real
elements of{λα} can be given by,

ρ(k) = 2

(
1+ 1

L

)
ρ0(k)+ cosk

L

Lc∑
α=1

(a1(sink −3α)+ a1(sink +3α))

−cosk

L

{ H c+2Lc∑
l=1

(R(sink − sinkh
l )+ R(sink + sinkh

l ))+ R(sink)

}

−cosk

L

{ H s+2Ls∑
β=1

(Q(sink − λh
β)+Q(sink + λh

β))+Q(sink)

}
(3.9)

σ(λ) = 2

(
1+ 1

L

)
σ0(λ)− 1

L

Ls∑
µ=1

(a1(λ− χµ)+ a1(λ+ χµ))

− 1

L

{ H c+2Lc∑
l=1

(Q(λ− sinkh
l )+Q(λ+ sinkh

l ))+Q(λ)
}

+ 1

L

{ H s+2Ls∑
β=1

(R(λ− λh
β)+ R(λ+ λh

β))+ R(λ)
}

(3.10)

with

an(λ) = 1

π

nu

λ2+ (nu)2 Q(λ) =
∫ ∞
−∞

dω

2π

e−iωλ

2 coshuω

R(λ) =
∫ ∞
−∞

dω

2π

e−iωλe−u|ω|

2 coshuω
.

(3.11)

Here, we have definedρ0(k) andσ0(λ) as follows

ρ0(k) = 1

2π
+ cosk

∫ ∞
0

dω

2π

cos(ω sink)

coshuω
J0(ω)e

−uω

σ0(λ) =
∫ ∞

0

dω

2π

cos(ωλ)

coshuω
J0(ω).

(3.12)
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Using the distribution functions thus obtained, we can describe the energy as follows

E

L
=
∫ π

0
dk ε0(k)ρ(k)+ 1

L

Lc∑
α=1

(ε0(k
+
α )+ ε0(k

−
α ))−

1

L

H s+2Ls∑
j=1

ε0(k
h
j )

− 1

2L
(ε0(0)+ ε0(π))+ u+O

(
1

L

)
(3.13)

where

ε0(k) = −2u− 2 cosk sink±α = 3α ∓ iu. (3.14)

Finally, we obtain the low-lying excited energy of the repulsive Hubbard model with
boundaries as follows (up to higher-order corrections ofL),

E = e0(u)× (L+ 1)+ e1(u)+
∑
{kh}

εc(k
h)+

∑
{λh}

εs(λ
h) (3.15)

with

e0(u) = −u− 2
∫ ∞

0

dω

ω

J0(ω)J1(ω)

coshuω
e−uω e1(u) = 1+

∫ ∞
0

dω

ω

J1(ω)

coshuω
. (3.16)

Here, we have abbreviated{kh
j } and{λh

α} as{kh} and{λh}, respectively. The symbolsεc(k)

andεs(λ) are defined by

εc(k) = 2u+ 2 cosk + 2
∫ ∞

0

dω

ω

cos(ω sink)

coshuω
J1(ω)e

−uω

εs(λ) = 2
∫ ∞

0

dω

ω

cos(ωλ)

coshuω
J1(ω).

(3.17)

We can recognize the quantitiesεc(k) and εs(λ) as the energies of the holon and the
spinon which correspond to the elementary excitations in the charge and the spin sectors,
respectively. Those energies take the same forms as the corresponding quantities in the
periodic-boundary case [13]. Moreover, the low-lying excited energy in the repulsive
Hubbard model under the periodic boundary condition is known to take the form [11, 12]

E = e0(u)× L+
∑
{kh}

εc(k
h)+

∑
{λh}

εs(λ
h). (3.18)

3.2. Attractive Hubbard model

In this section, we derive the low-lying excitation spectrum of the attractive (u < 0) Hubbard
model with boundaries at theSO(4) point.

As was discussed in section 1, by the transformations

cj+ −→ (−1)j c†j+ and cj− −→ cj− (3.19)

the HamiltonianH(u) can be changed intoH(−u) (for Hb = 0). Therefore, we can derive
the low-lying spectrum ofH(u) (u < 0) from that ofH(|u|) without new calculations.
(Here, we remark that the number of the fermions and the down spins are equal to
N ′ ≡ L+ 2M −N and M in the transformed systemH(|u|), where the corresponding
numbers are equal toN andM in the original systemH(u).) Indeed, using the result
for the repulsive case (3.15), we can obtain the low-lying excited energy of the attractive
Hubbard model with boundaries as follows

E = e0(|u|)× (L+ 1)+ e1(|u|)+
∑
{kp}

ε1(k
p)+

∑
{λh}

ε2(λ
h). (3.20)
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Here, the symbolsε1(k) andε2(λ) are defined by

ε1(k) = 2|u| − 2 cosk + 2
∫ ∞

0

dω

ω

cos(ω sink)

coshuω
J1(ω)e

−|u|ω

ε2(λ) = 2
∫ ∞

0

dω

ω

cos(ωλ)

coshuω
J1(ω).

(3.21)

The energiesε1(k) and ε2(λ) correspond toεc(k) and εs(λ), respectively. The parameter
kp in ε1(k

p) is introduced bykp = π − kh, where kh is a free parameter ofεc(k
h) in

equation (3.15). The quantitiesε1(k) and ε2(λ) are expected to describe the energies of
quasiparticles, which correspond to the elementary excitations in the spin and the charge
sectors, respectively, and take the same forms as those with the periodic boundary condition
[13]. Moreover, the low-lying excited energy in the attractive Hubbard model under the
periodic boundary condition is known to take the form [11],

E = e0(|u|)× L+
∑
{kp}

ε1(k
p)+

∑
{λh}

ε2(λ
h). (3.22)

4. Boundary scattering matrix of the Hubbard open chain at theSO(4) point

4.1. Repulsive Hubbard model

In this section, we derive the boundary scattering matrix for the elementary excitations in
the repulsive Hubbard model at theSO(4) point, using Grisaruet al’s method [16].

In order to discuss the elementary excitations more directly, we need more detailed
forms of the roots for the Bethe ansatz equations than those in section 3.1. Then, we
assume that the solutions of the Bethe ansatz equations (1.4) and (1.5) (withp1 = pL = 0)
for u > 0 take the following string forms [16]:

(1) λ-strings;n λα ’s combine into a string-type configuration to take the form,

λn,jα = λnα + i(n+ 1− 2j)u j = 1, . . . , n α = 1, . . . ,Mn

with a real numberλnα, apart from a correction of order e−δL (∃δ > 0).
(2) k–λ-strings; 2n kj ’s andn λα ’s combine into another string-type configuration and

take the following forms within the accuracy of O(e−δL) (∃δ > 0),

λ′n,jα = λ′nα + i(n+ 1− 2j)u j = 1, . . . , n α = 1, . . . ,M ′n

with a real numberλ′nα, and

k1
α = π − sin−1(λ′nα + inu)

k2
α = sin−1(λ′nα + i(n− 2)u) k3

α = π − k2
α

k4
α = sin−1(λ′nα + i(n− 4)u) k5

α = π − k4
α

...
...

k2n−2
α = sin−1(λ′nα − i(n− 2)u) k2n−1

α = π − k2n−2
α

k2n
α = π − sin−1(λ′nα − inu).

(3) Realkj ’s which do not form the above string-type configurations. (Hereafter, we
describe only this kind of real element in{kj } by the symbolskj .)

If we introduce the numberM ′ by M ′ =∑∞n=1 nM
′
n, the number of realkj ’s is equal

to N − 2M ′. We also find that the relationshipM =∑∞n=1 nMn +
∑∞

n=1 nM
′
n holds.
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Within the above string ansatz [16], we can rewrite the Bethe ansatz equation in the
following forms within the accuracy of O(e−δL)(∃δ > 0)

eikj2(L+1) =
∞∏
m=1

Mm∏
β=1

e

(
sinkj − λmβ

mu

)
e

(
sinkj + λmβ

mu

)

×
∞∏
m=1

M ′m∏
β=1

e

(
sinkj − λ′mβ

mu

)
e

(
sinkj + λ′mβ

mu

)
(4.1)

−e
(
λnα

nu

) N−2M ′∏
j=1

e

(
λnα − sinkj

nu

)
e

(
λnα + sinkj

nu

)

=
∞∏
m=1

Mm∏
β=1

Enm

(
λnα − λmβ

u

)
Enm

(
λnα + λmβ

u

)
(4.2)

exp(−i2(L+ 1)(sin−1(λ′nα + inu)+ sin−1(λ′nα − inu)))

= − e
(
λ′nα
nu

) N−2M ′∏
j=1

e

(
λ′nα − sinkj

nu

)
e

(
λ′nα + sinkj

nu

)

×
∞∏
m=1

M ′m∏
β=1

Enm

(
λ′nα − λ′mβ

u

)
Enm

(
λ′nα + λ′mβ

u

)
(4.3)

where

e(x) = x + i

x − i
(4.4)

Enm(x) =



e

(
x

|n−m|
)
e2

(
x

|n−m| + 2

)
e2

(
x

|n−m| + 4

)
. . .

. . . e2

(
x

n+m− 2

)
e

(
x

n+m
)

for n 6= m

e2
(x

2

)
e2
(x

4

)
. . . e2

(
x

2n− 2

)
e
( x

2n

)
for n = m.

(4.5)

The ground state corresponds to the case withN = L, M1 = L/2, Mn = 0 (n > 2) and
M ′n = 0 (n > 1).

In order to calculate the boundary scattering matrices for the excitations in the charge
and the spin sectors, we consider the case withN = L− 1,M1 = L/2− 1,Mn = 0 (n > 2)
and M ′n = 0 (n > 1) and introduce one hole in each sector. In this case, we rewrite
equations (4.1)–(4.3) to give

Ij

L
= zc(kj )

Jα

L
= zs(λα) (4.6)

where

2πzc(k) = 2

(
1+ 1

L

)
k + 1

L

L/2∑
β=1

{
θ

(
sink − λβ

u

)
+ θ

(
sink + λβ

u

)}

− 1

L

{
θ

(
sink − λh

u

)
+ θ

(
sink + λh

u

)}
(4.7)

2πzs(λ) = 1

L
θ

(
λα

u

)
+ 1

L

L∑
l=1

{
θ

(
λ− sinkl

u

)
+ θ

(
λ+ sinkl

u

)}
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− 1

L

{
θ

(
λ− sinkh

u

)
+ θ

(
λ+ sinkh

u

)}
− 1

L

L/2∑
β=1

{
θ

(
λ− λβ

2u

)
+ θ

(
λ+ λβ

2u

)}

+ 1

L

{
θ

(
λ− λh

2u

)
+ θ

(
λ+ λh

2u

)}
(4.8)

with θ(x) = 2 tan−1 x. Here,{Ij } (j = 1, . . . , L) and {Jα} (α = 1, . . . , L/2) take integers
and one of{Ij } ({Jα}) corresponds to the hole in the charge (spin) sector. We describe
the rapidities corresponding to the holes in the charge and the spin sectors bykh andλh,
respectively. In the present case, one holon exists with the energyεc(k

h) and one spinon
exists with the energyεs(λ

h) (see equation (3.15)).
Apart from the contributions of less than 1/L, we obtain the following forms

2πzc(k) = −2

(
1+ 1

L

)
(pc(k)− pc(0))− 1

L
(9(sink − λh)+9(sink + λh)+9(sink))

− 1

L
(8(sink − sinkh)+8(sink + sinkh)+8(sink)) (4.9)

2πzs(λ) = −2

(
1+ 1

L

)
(ps(λ)− ps(0))− 1

L
(9(λ− sinkh)+9(λ+ sinkh)+9(λ))

+ 1

L
(8(λ− λh)+8(λ+ λh)+8(λ)). (4.10)

Herepc(k) andps(λ) denote the momenta of the holon and the spinon, which are defined
in the corresponding (infinite) periodic system to take the forms [13]

pc(k) = π

2
− k −

∫ ∞
0

dω

ω

sin(ω sink)

coshuω
J0(ω)e

−uω

ps(λ) = π

2
−
∫ ∞

0

dω

ω

sin(ωλ)

coshuω
J0(ω)

(4.11)

respectively. Here, we have defined the functions9 and8 as follows

9(λ) = i
∫ ∞
−∞

dω

ω

e−iλω

2 coshuω
8(λ) = i

∫ ∞
−∞

dω

ω

e−|uω|e−iλω

2 coshuω
. (4.12)

Using the functionszc andzs thus obtained, we have

−2πzc(k
h)L = 2(L+ 1)(pc(k

h)− pc(0))+9(sinkh− λh)+9(sinkh+ λh)

+8(2 sinkh)+8(sinkh)+9(sinkh) (4.13)

−2πzs(λ
h)L = 2(L+ 1)(ps(λ

h)− ps(0))+9(λh− sinkh)+9(λh+ sinkh)

−8(2λh)−8(λh)+9(λh). (4.14)

Here, the equalities

2πzc(k
h)L = 0 (mod 2π) 2πzc(λ

h)L = 0 (mod 2π) (4.15)

hold since evaluation of each ofLzc andLzs at a root of the Bethe ansatz equations yields
an integer by definition.

In accordance with Grisaruet al’s method [16], we evaluate the boundary phase shift
of the elementary excitations. We focus on the fact that the quantization conditions (see
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equation (1.13)),

2(L+ 1)pc(k
h)+ ψcs(sinkh− λh)+ φL

c (k
h)+ ψcs(sinkh+ λh)+ φR

c (k
h) = 0

(mod 2π) (4.16)

2(L+ 1)ps(λ
h)+ ψcs(λ

h− sinkh)+ φL
s (λ

h)+ ψcs(λ
h+ sinkh)+ φR

s (λ
h) = 0

(mod 2π). (4.17)

Here,ψcs denotes the phase shift of the holon–spinon scattering in the bulk, andφL
c(s) and

φR
c(s) denote the phase shift of the holon (spinon) at the left end and right end, respectively.

Comparing equations (4.13)–(4.15) with the quantization conditions (4.16) and (4.17),
we can recognize that the relationships

φc(sink) = 1
2(8(2 sink)+8(sink)+9(sink)) (4.18)

φs(λ) = − 1
2(8(2λ)+8(λ)−9(λ)) (4.19)

hold apart from rapidity-independent additive constants, whereφc ≡ φL
c = φR

c and
φs ≡ φL

s = φR
s . Therefore, we can obtain the boundary scattering matrices for the charge

and spin sector, as follows

Kc(sink) = eiφc(sink) = 0
(
1+ i µ2

)
0
(

1
4 − i µ2

)
0
(
1− i µ2

)
0
(

1
4 + i µ2

) µ = sink

2u
(4.20)

Ks(λ) = eiφs(λ) = 0
(
1− i µ2

)
0
(

3
4 + i µ2

)
0
(
1+ i µ2

)
0
(

3
4 − i µ2

) µ = λ

2u
. (4.21)

In these calculations, we can also rederive the scattering matrix (Scs) for the scattering of
the holon and the spinon in the bulk [13]. We can identifyψcs as9 to have

Scs(λ) = eiψcs(λ) = −i
1+ i exp

(
πλ
2u

)
1− i exp

(
πλ
2u

) . (4.22)

4.2. Attractive Hubbard model

In this section, we derive the boundary scattering matrices in the attractive Hubbard model
at theSO(4) point. For this purpose, we take the same method as that in the previous
section.

First, we assume that the solutions of the Bethe ansatz equations (1.4) and (1.5) (with
p1 = pL = 0) for u < 0 take the following string forms [16, 13].

(1) λ-strings;n λα ’s combine into a string-type configuration to take the form,

λn,jα = λnα + i(n+ 1− 2j)|u| j = 1, . . . , n α = 1, . . . ,Mn

with a real numberλnα, apart from a correction of order e−δL(∃δ > 0).
(2) k–λ-strings; 2n kj ’s andn λα ’s combine into another string-type configuration and

take the following forms within the accuracy of O(e−δL)(∃δ > 0),

λ′n,jα = λ′nα + i(n+ 1− 2j)|u| j = 1, . . . , n α = 1, . . . ,M ′n
with a real numberλ′nα, and

k1
α = sin−1(λ′nα + in|u|)
k2
α = sin−1(λ′nα + i(n− 2)|u|) k3

α = π − k2
α

k4
α = sin−1(λ′nα + i(n− 4)|u|) k5

α = π − k4
α

...
...
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k2n−2
α = sin−1(λ′nα − i(n− 2)|u|) k2n−1

α = π − k2n−2
α

k2n
α = sin−1(λ′nα − in|u|).

(3) Realkj ’s which do not form the above string-type configurations. (Hereafter, we
describe only this kind of real elements in{kj } by the symbolskj ’s.)

If we introduce the numberM ′ by M ′ =∑∞n=1 nM
′
n, the number of realkj ’s is equal

to N − 2M ′. We also find that the relationshipM =∑∞n=1 nMn +
∑∞

n=1 nM
′
n holds.

Within the above string ansatz [16, 13], we can rewrite the Bethe ansatz equation in the
following forms,

e−ikj2(L+1) =
∞∏
m=1

Mm∏
β=1

e

(
sinkj − λmβ
m|u|

)
e

(
sinkj + λmβ
m|u|

)

×
∞∏
m=1

M ′m∏
β=1

e

(
sinkj − λ′mβ

m|u|

)
e

(
sinkj + λ′mβ

m|u|

)
(4.23)

−e
(
λnα

n|u|
) N−2M ′∏

j=1

e

(
λnα − sinkj
n|u|

)
e

(
λnα + sinkj
n|u|

)

=
∞∏
m=1

Mm∏
β=1

Enm

(
λnα − λmβ
|u|

)
Enm

(
λnα + λmβ
|u|

)
(4.24)

exp(−i2(L+ 1)(sin−1(λ′nα + in|u|)+ sin−1(λ′nα − in|u|)))

= − e
(
λ′nα
n|u|

) N−2M ′∏
j=1

e

(
λ′nα − sinkj

n|u|
)
e

(
λ′nα + sinkj

n|u|
)

×
∞∏
m=1

M ′m∏
β=1

Enm

(
λ′nα − λ′mβ
|u|

)
Enm

(
λ′nα + λ′mβ
|u|

)
(4.25)

apart from a correction of order e−δL (∃δ > 0). The ground state corresponds to the case
with N = L, M ′1 = L/2 Mn = 0 (n > 1) andM ′n = 0 (n > 2).

In order to calculate the boundary scattering matrices for the excitations in the charge
and the spin sectors, we consider the case withN = L− 1,M ′1 = L/2− 1,Mn = 0 (n > 1)
andM ′n = 0 (n > 2) and introduce one hole in the charge sector and one particle in the spin
sector. In this case, we rewrite equations (4.23)–(4.25) to give

I

L
= z1(k

p)
Jα

L
= z2(λα) (4.26)

where

2πz1(k) = 2

(
1+ 1

L

)
k − 1

L

L/2∑
β=1

{
θ

(
sink − λβ
|u|

)
+ θ

(
sink + λβ
|u|

)}

+ 1

L

{
θ

(
sink − λh

|u|
)
+ θ

(
sink + λh

|u|
)}

(4.27)

2πz2(λ) = 2

(
1+ 1

L

)
(sin−1(λ+ i|u|)+ sin−1(λ− i|u|))− 1

L
θ

(
λα

|u|
)

− 1

L

{
θ

(
λ− sinkp

|u|
)
+ θ

(
λ+ sinkp

|u|
)}
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− 1

L

L/2∑
β=1

{
θ

(
λ− λβ

2|u|
)
+ θ

(
λ+ λβ

2|u|
)}

+ 1

L

{
θ

(
λ− λh

2|u|
)
+ θ

(
λ+ λh

2|u|
)}

. (4.28)

Here,I and {Jα} (α = 1, . . . , L) take integers. One of{Jα} corresponds to the hole in the
charge sector andI corresponds to the particle in the spin sector. We describe the rapidities
corresponding to the particle in the spin sector and the hole in the charge sector bykp and
λh, respectively. In the present case, one quasiparticle exists in the spin sector with the
energyε1(k

p) and one quasiparticle exists in the charge sector with the energyε2(λ
h) (see

equation (3.20)). Apart from the contributions less than 1/L, we obtain the following forms

2πz1(k) = 2

(
1+ 1

L

)
(p1(k)− p1(0))+ 1

L
(9(sink − λh)+9(sink + λh)+9(sink))

+ 1

L
(8(sink − sinkp)+8(sink + sinkp)+8(sink)) (4.29)

2πz2(λ) = −2

(
1+ 1

L

)
(p2(λ)− p2(0))− 1

L
(9(λ− sinkp)+9(λ+ sinkp)+9(λ))

+ 1

L
(8(λ− λh)+8(λ+ λh)+8(λ). (4.30)

Here p1(k) and p2(λ) denote the momenta of the quasiparticle corresponding to the
elementary excitations in the spin and the charge sectors, respectively, which are defined
by [13]

p1(k) = k −
∫ ∞

0

dω

ω

sin(ω sink)

coshuω
J0(ω)e

−|u|ω

p2(λ) = −
∫ ∞

0

dω

ω

sin(ωλ)

coshuω
J0(ω).

(4.31)

Therefore, we have

2πz1(k
p)L = 2(L+ 1)(p1(k

p)− p1(0))+9(sinkp− λh)+9(sinkp+ λh)

+8(2 sinkp)+8(sinkp)+9(sinkp) (4.32)

−2πz2(λ
h)L = 2(L+ 1)(p2(λ

h)− p2(0))+9(λh− sinkp)+9(λh+ sinkp)

−8(2λh)−8(λh)+9(λh) (4.33)

with

2πz1(k
p)L = 0 (mod 2π) 2πz2(λ

h)L = 0 (mod 2π). (4.34)

We take the quantization conditions (see equation (1.13))

2(L+ 1)p1(k
p)+ ψ12(sinkp− λh)+ φL

1 (sinkp)+ ψ12(sinkp+ λh)+ φR
1 (sinkp) = 0

(mod 2π) (4.35)

2(L+ 1)p2(λ
h)+ ψ12(λ

h− sinkp)+ φL
2 (λ

h)+ ψ12(λ
h+ sinkp)+ φR

2 (λ
h) = 0

(mod 2π) (4.36)

into account to read off the phase shifts from equations (4.32)–(4.34). We have

φ1(sink) = 1
2(8(2 sink)+8(sink)+9(sink)) (4.37)

φ2(λ) = − 1
2(8(2λ)+8(λ)−9(λ)) (4.38)
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(up to rapidity-independent additive constants), whereφ1 ≡ φL
1 = φR

1 and φ2 ≡ φL
2 = φR

2 .
Therefore, we can obtain the boundary scattering matrices for the spin and charge sector,
as follows

K1(sink) = eiφ1(sink) = 0(1+ i µ2 )0
(

1
4 − i µ2

)
0
(
1− i µ2

)
0
(

1
4 + i µ2

) µ = sink

2|u| (4.39)

K2(λ) = eiφ2(λ) = 0
(
1− i µ2

)
0
(

3
4 + i µ2

)
0(1+ i µ2 )0

(
3
4 − i µ2

) µ = λ

2|u| (4.40)

respectively. In these calculations, we have also rederived the scattering matrix (S12) for
the scattering of the quasiparticles corresponding to the charge and the spin sectors in the
bulk [13]. We can identifyψ12 as9 to give

S12(λ) = eiψ12(λ) = −i
1+ i exp

(
πλ
2|u|
)

1− i exp
(
πλ
2|u|
) . (4.41)

5. Summary

In this paper, we have discussed the elementary excitations in the repulsive and the attractive
Hubbard models with boundaries at theSO(4) point.

First, we derived the energy in the low-lying excited state where there exist quasiparticles
corresponding to the elementary excitations. The results thus obtained take different forms
from those of the periodic-boundary case only by a constant term. As is expected, each
of the quasiparticles in charge and spin sectors has the same energy as that in the periodic
chain.

Next we derived the boundary scattering matrices for the quasiparticles in charge and
spin sectors. We found that the boundary scattering matrix for the charge excitation with
u > 0 takes the same form as that for the spin excitation withu < 0, and the matrix for
the spin sector withu > 0 takes the same form as that for the charge sector withu < 0.
These relationships may come from the fact that the transformationc

†
j+ → (−1)j cj+ yields

the changeH(u)→ H(−u) at theSO(4) point and interchanges spin and charge degrees
of freedom.

The next step in our investigations may be to determine the boundary scattering matrices
for the Hubbard open chainwith boundary fields. When we obtain the boundary scattering
matrices of the Hubbard modelwith or without boundary fields, we expect to gain insight
into a number of physical properties, similarly to the case of theXXZ open chain [19–21].

For example, we can study the thermodynamics of a field theory describing the low-lying
excitations in the Hubbard model. The one-dimensional Hubbard model is recognized as a
lattice regularization of theSU(2) Gross–Neveu model, which is an integrable relativistic
field theory (see, for example, [22, 23]). A scaling limit yields the integrable field-theoretical
model with boundary interactions from the Hubbard open chain. Therefore, by taking an
appropriate limit of the boundary scattering matrices of the Hubbard open chain, we may
directly derive the matrices describing the boundary scattering [24] in the resulting field
theory. Using the scattering matrices thus obtained, we may derive the thermodynamic
Bethe ansatz equations for the free energy of the field theory with boundaries. It is known
that such a field theory with boundary interactions is closely related to one-dimensional
systems with impurities, which have attracted much attention recently (see, for example
[20, 21]). Therefore, the boundary scattering matrices may also be useful to investigate
impurity problems.
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Such physical applications of the scattering matrices will be given in a separate paper.

Note added in proof. After we submitted this paper, Tsuchiya [25] derived boundary scattering matrices for the
repulsive Hubbard model with the case-A boundary field. His results correspond to an extension of a part of our
results in this paper.

We have also determined boundary scattering matrices for the following four cases [26]:
• repulsive Hubbard model with the case-A boundary field;
• repulsive Hubbard model with the case-B boundary field;
• attractive Hubbard model with the case-A boundary field;
• attractive Hubbard model with the case-B boundary field.
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