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Received 3 December 1996, in final form 14 March 1997

Abstract. Elementary excitations in the one-dimensional Hubbard model with boundaries are
discussed at the half-filing and without external magnetic fields. The energy of the present
model is evaluated in the low-lying excited state, where there exist quasiparticles corresponding
to elementary excitations in the charge and the spin sectors. The boundary scattering matrix of
the quasiparticles is evaluated.

1. Introduction

Recently, exactly solvable models with boundaries have attracted much attention. The one-
dimensional Hubbard model with boundary fields is one of such strongly correlated systems.
Schulz [1] has exactly diagonalized the Hubbard model with free boundaries by using the
Bethe ansatz method. The present authors [2] derived the Bethe ansatz equation of the
Hubbard open chain with a boundary field. Afterwards, several authors derived the Bethe
ansatz equations with other boundary fields [3-5]. The physical properties of the Hubbard
model with boundaries have been studied using the Bethe ansatz equations thus obtained.
The finite-size scaling technique based on the boundary conformal field theory has enabled
us to investigate critical behaviours of the present model with boundary fields [2-4] (see
also [6]). The present authors have also evaluated the boundary contributions to physical
guantities in the repulsive and the attractive Hubbard models with boundaries [7, 8]. In this
paper, we discuss the elementary excitations in the Hubbard model on the open chain.

We study the present model at the half-filling without external magnetic fields in the
bulk, which is described by the following Hamiltonian,

L-1 L

Hu) ==Y Y (elyejii + ¢l y1o0io) +4u > (njp — e — 3) +H° (1.1)
j=lo=%£ j=1

wherecja (¢cjo) denotes a fermionic creation (annihilation) operator at the jsitéth the

spino, andnj, = el cjo denotes the number operator of the fermion. We take an even

jo
integer asL, which denotes the length of the open chain. The symtbkorresponds to

the boundary terms and takes the forms

HP — { —piniy +n- =D —pr(apy +np- =1 for case A 1.2)

—pi1(n1y —n1 ) — pr(npy —np-) for case B.
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The energy of the present model is given by [2-5]

N
E =) (—2u—2cosk;) + uL + e(p1) + e(pr) (1.3)
j=1
with
; sink; — A iu sink; + A I
elk/Z(L+l)Z(k‘; P, pL) — 1_[ - ] B + .I/t - j + B + -M (14)
p1 SINkj — Ap —lu SINk; +Ap — iu
ﬁ Ay — SiNk; 4 iu Ay + Sink; + iu
1—1 A — SINk; — iu Ao + SiNk; — iu
M . .
Ao — Ag +12u Ay + Ag +12u
=Y (Aa; p1, . - 15
( plpL)l—[)\a—xﬂ—uzuanr)\ﬁ—Qu (1.5)
=1
(Ba)
forj=1,...,Nanda =1,..., M, whereN (or M) denotes the number of the fermions

(or the fermions with down spins), andp) takesp (or 0) for case A (or case B). Here,
we defineZ(k;; p1, pr) andY (he; p1, pr) by
1— pefikj
Z(k; p1, pr) = ¢ (k; pO¢(k; pr) for cases A, B ¢(k; p) = 1o pdh (1.6)
for case A

n(x; pn(a; pr) for case B
A+i+3(p7t = p)
A—i(u+3(pt—p)
(In [2], the present authors have derived the Bethe ansatz equation for case A. One of the
present authors (HA) [5] has derived the Bethe ansatz equation for case B from the equation
for case A))

We mainly discuss the case without the boundary fiejls=£ p; = 0), i.e. H°> = 0.
In this case, the Hamiltonian (1.1) (with® = 0) is invariant under &0 (4) = SU(2) x
SU(2)/Z, transformation, similarly to the periodic-boundary case [9]. Namely, all the
following six generators

Y(A; p1, pL) =
.7

n; p) =—

L L L
S = Zc;Jrcj_ ST = ZCLCH_ §% = Z %(nj_ —njy) (1.8)
j=1 j=1 j=1
L ) L ) ) L
T=Y (-1/cjic; TH=Y"(-Dic_c, 3= "3 +ni- -1 (19)
j=1 j=1 j=1

commute with the Hamiltoniart{(z) with H° =0. The Z, quotient corresponds to
the fact that the operatas® + 72 only has integer eigenvalues and all half-odd integer
representations of th8U (2) x SU(2) are projected out, ag is even. Similarly to the
periodic-boundary case, the partial particle—hole transformation

Cjp — (—1)jc;+ cj— — Cj— (1.10)

yields the changét(u) — H(—u) at the 'SO(4) point’ (i.e. for H® = 0) and interchanges
the charge and the spin degrees of freedom. Indeed, this transformation interchanges the
spin-SU (2) generatorgs, S, %} and the charg&U (2) generatord7, T, T3}.
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The elementary excitations in the Hubbard model withpgkeodic boundary condition
have been discussed by many authors, e.g. [10-14], using the Bethe ansatz equation for the
periodic Hubbard chain [10]. First, Lieb and Wu [10] showed that the repulsive Hubbard
model at half-filling without magnetic field was an insulator for all positive values.of
Woynarovich [11] gave a detailed analysis of spin and charge excitations in the repulsive
and the attractive Hubbard models.uikiperet al [12] rederived Woynarovich'’s result [11]
using another method. Essler and Korepin [13] determined the two-particle scattering matrix
for the elementary excitations. (Andrei [14] also discussed the scattering matrix.) These
investigations have clarified the properties of the elementary excitations in the Hubbard
model with theSO(4) symmetry; (1) in the repulsive Hubbard model, charge and spin
excitations are massive and massless, respectively. (2) In the attractive Hubbard model,
spin and charge excitations are massive and massless, respectively. (3) In both the repulsive
and the attractive cases, the excitation spectrum is built out of four elementary excitations
(i.e. quasiparticles), which form the fundamental representatigitaR) x SU(2). Two of
these elementary excitations carry spin but no charge, and two carry charge but no spin.

In this paper, we have two aims. One of them is to derive the low-lying excited energy of
the Hubbard open chain with th#0 (4) symmetry, where there exist several quasiparticles
corresponding to elementary excitations in the charge and spin sectors. Woynarovich [11]
has derived the low-lying excited energy with several quasiparticles for the periodic Hubbard
chain (see also [12]). We extend his method [11] to derive the corresponding energy under
the open boundary condition (sections 3.1, 3.2). As preliminaries for this calculation we
have to discuss properties of the solutions in the Bethe ansatz equations (1.4) and (1.5) for
the Hubbard model with boundaries (section 2).

The other aim is to derive the boundary scattering matrices for the quasiparticles of the
Hubbard open chain with th&0 (4) symmetry (sections 4.1, 4.2).

Such boundary scattering matrices, which describe the phase shifts in the scattering
of physical excitations at boundaries, have been evaluated in other models, e.g. [15-17].
Fendley and Saleur [15] and Grisagtial [16] have derived the boundary scattering matrix
for the Heisenberg open chain directly from the Bethe ansatz equation. Essler [17] has
derived the scattering matrix for the supersymmetricmodel, using Grisarat al's method
[16]. Grisaruet als method [16] is based on the following quantization condition for
factorized scattering of two particles with rapidities and », on a line of lengthL,

explip(r1)2L)S12(h1 — A2) KL (A1) S12(A1 + 22) KR (A1) = 1. (1.11)

This condition comes from the requirement that the wavefunction should vanish at both ends
of the line [15, 16]. Here, we describe the physical energy and the physical momentum of
a ‘dressed’ particle (i.e. quasiparticle) with a rapidityby the symbolss(1) and p(2).

(We have to defingr (1) by the physical momentum of the corresponding (infinite) periodic
system [15,16].) The symbd§i2(2) denotes the bulk scattering matrix of the particles
labelled by ‘1’ and ‘2. The symboIKlL(R)(M denotes the boundary scattering matrix
describing the scattering off a boundary at the left (right) end. When the scattering matrices

S12, K1 ™ are proportional to the identity matrix, we can introduce phase shifis¢; "

by

S12(1) = @z KLy = g™ (1.12)
(up to a rapidity-independent phase factor) to have the relationship
2Lp(M) + Y12(hs — A2) + @T (A1) + Y12(Ay + A2) + @5 (A1) =0 (mod 27) (1.13)

apart from a rapidity-independent additive constant. For models on a one-dimensional
lattice with L sites, we should také + 1 asL. (For the free-fermion model, since each
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of the phase shiftsiio, ¢: ™ is equal to zero, this relationship yields= n/(L + 1)
(n=1,...,L). Indeed, the quantization condition for the free-fermion model on the open
chain with L sites is given not by = 7n/L butby p = 7n/(L + 1).)

The quantization condition (1.11), i.e. (1.13), enables us to drive the boundary scattering
matrix for the elementary excitations from the Bethe ansatz equation of the Hubbard model
with boundaries. For detailed discussions, see sections 4.1 and 4.2.

2. Properties of the solutions for the Bethe ansatz equation of the Hubbard model
with boundaries

In this section, we discuss properties of the solutions for the Bethe ansatz equations (1.4)
and (1.5), as preliminaries for sections 3.1 and 3.2. The purpose of this section is to derive
the ‘complementary solutions’ for the Bethe ansatz equations of the Hubbard model with
boundaries. (Woynarovich [11] has derived the complementary solutions for the periodic-
boundary case.)

If we require that solutiongk;, A} (j =1,...,N,a =1,..., M) for the Bethe ansatz
equations correspond to independent Bethe ansatz states, we can make the restrictions
—% <argk; < 5 with k; # 0,7, and -7 < argh, < 5 with 1, # 0. We also have to
identify k; 4+ 27 ask; (see [1,2]).

Then,—k_,- and —Aa also satisfy equations (1.4) and (1.5). If we defing andA_, as

—kjand—i, (j=1,...,N, e =1,..., M), respectively, we have the relationships
M :
; sink; — Ag +iu
LD 7k pr o py = [ St AT (2.1)
,31;[1 sink; —Ag —iu
+N )H)(_Sinkz—}—iu_y()L ) ) Ag +iu -1 +M D — g+ i2u
AL —sink —iw = e PR POAT ) L = — 2
j=41,...,£N o==+1,...,+M. (2.2)
For a fixed sef{A,} (@ = £1, ..., £M), we can rewrite equation (2.1) as
P(x)=0 (2.3)
+M
P(x) = x"(x — p)(x — pr) [ ] &% = 2i0hp +iw)x — 1)
B=%1
+=M
—1 = p)d— prx) [] &% = 2i(hp — iw)x — 1) (2.4)
p=+1

with x = €%. Then we can recogniZe€®} (j = +1,..., £N) as 2V of 2L + 4M + 2 roots

for equation (2.3). We can check tha @.e. 1) and & (i.e. —1) are also the roots of the
equation. We can also check that the relat@) = —x?+4M+2p(x~1) holds. Therefore,

if x is a root of equation (2.3)y~! is also a root of the equation. Now we parametnze
the rest of the roots bye} for j = +£1,...,£N' (N’ = L + 2M — N) with k_j=—k;

for j =1,..., N'. (Here, we can recognize that the elements@dﬁf} with j =1,..., N’
live on the half of the complex plane with 5 < argk; < %.) We call these r00t$k }

(j = *1,...,£N’) complementary solutlons By definition, the following relationships
among{k;} (j = £1... £ N') and{A,} (@ = £1... 4+ M) hold,
T sink; — A + iu

eil§2(L+1)Z(];j; P, pL) = l_[

= : 2.5
p=1 SINkj — Apg —iu (5)
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Introducing the parametens = €% (j = +1,...,+N) and%; = €5 (j = £1,..., £N"),
we can rewrite equation (2.2) as

+N 2 : . .
1 — 2i(Aq — 1 -1 1 1 Ao +1
> ;n xlz -( : .u)xl =—=InY(a; p1, pr) + 7 In (— +.u>
=t X =210 Fiu)x =1 I I Ao — U

HE 1 ry— g +i2u
- ZIn

—_— (mod 2r). (2.6)
ﬁzﬂl Ay —Ag —12u
The left-hand side of this equation can be transformed as follows,
1 —2i(hg — -1 2 A-
55 B Y O
e 2t 22 = 2i(hg +iu)z — 1dz i A4tiu

iN: 1 X2 = 2i(hg — )% — 1
i

1
) In )‘a; )‘a;
F i +imiy —1 1 e PG L)

I=+1
+M :
2. Ay —Ag—i2
+ —1In # (mod 2r) 2.7)
ﬂzﬂl Ay — Ag +12u

where the symboC; denotes the contour which encircles= x; in the complex plane. In
this calculation, we have deformed the contoi@’s (I = +1, ... + N) to encircle{z = X}

(Il =41,...£ N’), z = £1 and the branch cuts of the integrand. Then, we arrive at the
following relationships amon@gj} (j=Z£1...£N)and{r,} (¢ = £1... £ M),

N, —sink +in A +in\ T Ay — Ap +i2u
——— =Y (; p1, pL) | — : PO p— (2.8)
=41 e — SiNk; — iu Ao —lu) g2 iy ke —Ap —12u
where
- n(; pon(; pr) for case A
Y (%; pa, = 2.9
(A p1, p1) {1 for case B. (2.9)

Through the above discussions, we have obtained the following relationships among the
roots{k;} (j =1,...,N), {kj} (j =1,...,N)and{r} (¢ =1,..., M),

i sink; — Ag +1u Sink; + Ag +iu

2Nz prp) =] o (2.10)
p1 SINkj — Ag —lu SINk; +Ap — iu
M . ~ . . ~ .

~ sink; — Ag +iu sink; + Ag + iu

2LtV 7 (k;s p1, pr) = l—[ S L (2.11)

-1 Sink; — Ag — iu sink; + Ag — iu

N Ao — Sink; + iu Ay + Sink; + iu M e — Mg 4 12u Ay + Ap + i2u
— =Y (i propn) [ ] . :
11 Ao — SINk; — u Ay + sink; — iu i Ao —Ag —12u kg +Ag —i2u
(B#a)
(2.12)
N

« — Sink; + iu Ay + Sink; + iu

I’ Ao = hp +i2u do + Ap +i2u
=1 Ao — sink; — iu Ay + Sink; — iu

ka—kﬁ—iZuka+)\5—i2u

M
=Y (0u: p1.pr) []
p=1
(B#a)
(2.13)
where we have removed the restrictions for the arguments of the roots in these expressions.

In the following sections, we only discuss the case wjth= p, = 0, where the
Hubbard model has th€0(4) symmetry. For this cas¢, =Y =Y =1 holds.
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3. Low-lying excited energy in the Hubbard open chain at theSO(4) point

3.1. Repulsive Hubbard model

In this section, we derive the energy in the low-lying excited state in the repulsive
(u > 0) Hubbard open chain with th80(4) symmetry. Our approach is an extension
of Woynarovich’'s method [11] by which the low-lying excited spectrum in the periodic-
boundary case has been discussed.

In our calculations, we use the roots;}, {IE,-} and {A,} of equations (2.10)—(2.13)
with Z=Y =Y =1. We assume that we can make the restrictions Rek; < r,
0< RelE, < and O< Rel, for the roots of the equations which give the rapidities of
independent Bethe ansatz states.

As far as we consider low-lying excited states above the ground stétef the possible
L + 2M values{k;} and {IE,-/} (j=1,...,N, j/=1,...,N’) can be expected to take the
form

sink® = A, Fiu + O(e™°F) +ImkE > 0(s > 0) (3.1)

similarly to the periodic-boundary case [11]. Indeed, we can check kfasatisfy
equations (2.10) and (2.11) (with = 1). In this section we use the symby], to describe
only those elements ifi,} which are associated with compléfs by the relation (3.1).
The other elements of the spt,}, which are associated with compléxs, are described
by the symbolA,. We assume that the other elements{in} (j =1,..., N) and {12_,-}
(j=1,...,N) are real. Hereafter, we describe only the real elements by the syrmbols
andk;. Therefore, the total number of the real valuess andk;’s, is equal toL.

Then, we can obtain the following equations for the redefined paramgigrs{;},
{Ae} and{Aq},

2L+ _ l_[ sink; — Ag + iu sink; + Ag +iu sink; — Ag +iu sink; + Ag +iu
- Llsink; —ag —iusink; + ag —iu 1 sink; — Ag —iusink; + Ag — iu

B B
(3.2)
gh204D _ I sink; — Ag + iu Sink; + Ag + iu I sink; — Ag +iu sink; + Ag +iu
5 SiNk; —Ag —iusink; + g —iu 5" sink; — Ag —iu sink; + Ag —iu
(3.3)
Ao — SiNk; +iu Ao + SiNk; +iu Ao —Ag+i2uhg +2p +i2u (3.4)
e = SiNky —u hg +Sink; —iu gL ha = Ap —12u Ao + g — i2u '
Ay — Sink; +iu Ag +sink +iu Ay — Ap +i2u Ay + Apg +i2u (3.5)
Ao —sinky —iu Mg +Sink —iu gy Da — Ap —i2u A + Ap — i2u '

apart from corrections of order& (35 > 0).

In the ground state of the repulsive Hubbard model at the half-filling without the
magnetic field, the numbers of the elemefks}, {lzj}, {r,} and {A,} are L, 0, L/2 and
0, respectively, and all the elements{af,} are real. We consider the excitation above the
ground state.

In accordance with the procedure for the periodic-boundary case [11, 12], we introduce
several parameters. By the symbgld}, we describe the positions of the holes in the
distribution of the real elements ¢£,}. We also introduce auxiliary variabldsg, } which
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generate the complex (i.e. not real) element$gff in the following way,
X T iu for |x.l < u
| x + signim y,)iu for |x,l > u.

Since{IEj} behaves like the holes in the distribution{éf}, we describe{l?,} by the symbols
{k;‘}. Then, using equations (3.4) and (3.5), we can derive the following equations

o (3.6)

HﬁLSXu_)‘g+i”X“+)‘2+i”_ ﬁ X — Xv +i2u ¥, + xo +i2u 3.7)

k] XM—Ag—iuXM+k2—iu_ ] X — Xv —12u x, + xv —i2u ‘
f=m)

Ag — SNk +iu Ag + SNk +iu lL_[ Ay — Ag +i2u Ay + Ap +i2u
B=1

1 Ay —Sink' —iu Ay + Sink! — iu Ao — Ag—i2u Ay + Ap —i2u’

H°+2L®

(3.8)

(B#a)

Here, the number of the elemer{vé;} is equal toH® + 2LS, whereHS= N — 2M and L®
denotes the number dfy,}, and the number of the elemer[bsj‘} is equal toH® + 2L°,
where H = L — N and L denotes the number ¢fA,}. (Refer to the periodic-boundary
case [11,12].) As far afl® + 2L° and H® + 2L® are much less thah, the positions of the
holes{k}‘} and{A"} can be recognized as free parameters, similarly to the periodic-boundary
case [11,12]. Once equations (3.7) and (3.8) are solved, the distributifip}odnd real
elements of{A,} can be given by,

LC
p0 =2(1+ 7 ) oot + S5 Y (aa(sink = A,) +as(sink + )

a=1
cosk H°+2L°
— { > (R(sink — sink) + R(sink + sink/")) + R(sink)}
=1
cosk HS42L3
—L{ D (Q(sink =A%) + Q(sink + 1)) + Q(sink)} (3.9
p=1
1 1E
o(r) =2 (1 + L) o0(h) = 7 (@0 = x) + a1 + X))
n=1
1 H°42L°¢
—L{ > QO —sinkf) + Q( + sinkf)) + Q(A)}
=1
HS+2L°
+L{ > (R(,\—xg)+R(x+)\g))+R(A)} (3.10)
=1
with
) = 1 nu )\)_/"o do e
i )_;)L2+(nu)2 om = oo 27 2 cOShuw
[ e ivrgulwl (311)
ROy = /_OO 21 2coshuw
Here, we have definegy(k) andog()) as follows
o(k) 1 + cosk * dw coqw sink)J( _—
0(K) = ~— - —— - Jolo
21 o 2m coshuw (3.12)

o d£ coSwl) Jo(@)

) =
o0(4) o 2 coshuw 0
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Using the distribution functions thus obtained, we can describe the energy as follows
HS+2LS

E 4 1E 1
- deeap(l) + Dok o) — D o)

j=1
1 1
—2L(€o(0)+€o(7f))+u+O<L) (3.13)
where

€o(k) = —2u — 2 cosk sinkt = A, Tiu. (3.14)

Finally, we obtain the low-lying excited energy of the repulsive Hubbard model with
boundaries as follows (up to higher-order correctiond. jyf

E = eou) x (L+1) +e1(u) + ) eclk™) + ) es(A) (3.15)
{kh} (A}
with
_ ® dw Jo(w)J1 (@) _,., _ ®do Ji(w)

Here, we have abbreviatdd} and {1} as{k"} and{,"}, respectively. The symbols(k)
andeg(1) are defined by
* dw cogw Ssink)

k) =2 2cosk + 2 —J e
gc(k) = 2u + +/0 > coshue 1@

B * dw cogwA)

We can recognize the quantitieg(k) and es(A) as the energies of the holon and the
spinon which correspond to the elementary excitations in the charge and the spin sectors,
respectively. Those energies take the same forms as the corresponding quantities in the
periodic-boundary case [13]. Moreover, the low-lying excited energy in the repulsive
Hubbard model under the periodic boundary condition is known to take the form [11,12]

E=eo(u) x L+ Y ec(k™) + Y es(M. (3.18)

(kM) (M

(3.17)

3.2. Attractive Hubbard model

In this section, we derive the low-lying excitation spectrum of the attraciive Q) Hubbard
model with boundaries at th&0 (4) point.
As was discussed in section 1, by the transformations

cjy — (—1)]'0;+ and Cj— — ¢j— (3.19)

the Hamiltonian («) can be changed int#((—u) (for H® = 0). Therefore, we can derive

the low-lying spectrum ofH(u) (u < 0) from that of H(Ju|) without new calculations.
(Here, we remark that the number of the fermions and the down spins are equal to
N =L+2M — N and M in the transformed systerf(|u|), where the corresponding
numbers are equal t&% and M in the original systenf{(«).) Indeed, using the result

for the repulsive case (3.15), we can obtain the low-lying excited energy of the attractive
Hubbard model with boundaries as follows

E =eo(lul) x (L+1) +er(lul) + Y _e1(k”) + ) e20.. (3.20)
{kP} {Ah}
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Here, the symbols; (k) ande, (1) are defined by

e1(k) = 2Ju| — 2 cosk + 2/ do COS@SINK) | ot
o ® coshuw (3.21)
(A)_Z/“’dwcos(m)“ ) '
el = s @ coshuw -

The energies(k) and (L) correspond taec(k) and eg(r), respectively. The parameter

kP in e1(kP) is introduced bykP = — k", where k" is a free parameter of¢(k") in
equation (3.15). The quantities(k) and e,(A) are expected to describe the energies of
guasiparticles, which correspond to the elementary excitations in the spin and the charge
sectors, respectively, and take the same forms as those with the periodic boundary condition
[13]. Moreover, the low-lying excited energy in the attractive Hubbard model under the
periodic boundary condition is known to take the form [11],

E=eo(lul) x L+ > e1(k’) + > ea(a"). (3.22)

{kP} {Ah}

4. Boundary scattering matrix of the Hubbard open chain at the SO(4) point

4.1. Repulsive Hubbard model

In this section, we derive the boundary scattering matrix for the elementary excitations in
the repulsive Hubbard model at ti§e& (4) point, using Grisariet als method [16].

In order to discuss the elementary excitations more directly, we need more detailed
forms of the roots for the Bethe ansatz equations than those in section 3.1. Then, we
assume that the solutions of the Bethe ansatz equations (1.4) and (1.5p{witlp; = 0)
for u > 0 take the following string forms [16]:

(1) A-strings;n A,’'s combine into a string-type configuration to take the form,

AT =00 Fi(n 41— 2j)u j=1....n a=1...,M,

with a real numbei”, apart from a correction of order# (3§ > 0).
(2) k—A-strings; 2 k;'s andn 1,’s combine into another string-type configuration and
take the following forms within the accuracy of(@?") (s > 0),
A = i+ 11— 2j)u j=1....n a=1....M

with a real numben”’, and

kolt =7 — sin‘l(k’g + inu)

k2 = sin t(\" +i(n — 2)u) K=m—k2
k& =sint " 4 i(n — Hu) kX=m—k?
k272 = sint (" —i(n — 2)u) k27t =g — k22

ki" =7 — Sinfl()\’z —inu).

(3) Realk;’s which do not form the above string-type configurations. (Hereafter, we
describe only this kind of real element {h;} by the symbols;.)

If we introduce the numbeM’ by M’ = >""_, nM), the number of reak;'s is equal
to N — 2M’. We also find that the relationshig = Y>> nM, + Y>>, nM, holds.
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Within the above string ansatz [16], we can rewrite the Bethe ansatz equation in the
following forms within the accuracy of @ °4)(35 > 0)

b2 _ 1_“_[ <smk — Ay >e<smk,+/\ﬁ>
mu

m=1p=

My (sink; — Ay sink; + Ay
x]‘[]‘[ ( o )e( f” ) (4.1)
m=1p=1
A\ V22 sink; A"+ sink;
() TTe(550™)-(50™)
nu n nu nu
j=1
oo M, )Ln _ )Lm )‘Z +)\;'31
]II] ( )Em( : ) 4.2)

exp(—i2(L + 1)(sm 1@’” +inu) + sin TV — inu)))

NI\ N3 sink; A"+ sink;
= o) T (™) ()
nu i1 nu nu
J=
)L/n )L/m )L/g +)‘”g
X 1_[ 1_[ Enm - Enm T (43)

m=1p=

where

e(x)=x+|

(4.4)

e a e? * e? a
|n —m)| n—m|+2 n—m|+4) "

E,n(x) = ”'ez<n+:1—2>e<n—im> forn #m (4.5)

(20 (5 ) ()

The ground state corresponds to the case wite= L, M1 =L/2, M, =0 (n > 2) and
M,=0@n=>1).

In order to calculate the boundary scattering matrices for the excitations in the charge
and the spin sectors, we considerthe case Wita L — 1, M1 =L/2—1,M, =0(@n > 2)
and M, =0 (n > 1) and introduce one hole in each sector. In this case, we rewrite
equations (4.1)—(4.3) to give

Tty T =200 (4.6)
where
1 1 & sink — g sink + Ag
21 z0(k) = 2<1+ >k+ = {9 () +0 ()}
L L = u u

()

u
1 (A, 1 & A — sink X+ sink
2mzs(2) = 76 (u> +7 > {9 <u’) +6 <u1)}
=1
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_% {9 ()\ —zink“) 4o <k ~|—jinkh)}
L/2
L Ca) a0l
() ()

with 0(x) = 2tamtx. Here,{I;} (j =1,...,L) and{J,} (@ = 1,..., L/2) take integers
and one of{/;} ({J,}) corresponds to the hole in the charge (spm) sector. We describe
the rapidities corresponding to the holes in the charge and the spin sectéfsabg A",
respectively. In the present case, one holon exists with the emgftf}) and one spinon
exists with the energys(1") (see equation (3.15)).

Apart from the contributions of less tharn 71, we obtain the following forms

27 z0(k) = =2 (1 + i) (pe(k) — pe(0)) — %(\Il(sink — A + W(sink + A" + w(sink))
—%(d)(sink — sink™) + ®(sink + sink™ + @ (sink)) (4.9)
2z5(1) = —2 (1 + z) (ps(A) — ps(0)) — %(\y(,\ — sink™ + Wi + sink™) + w (1))

1
+ (@0 — A+ e+ AN +o0)). (4.10)

Here pc(k) and ps(A) denote the momenta of the holon and the spinon, which are defined
in the corresponding (infinite) periodic system to take the forms [13]

*) = i /oo dw sin(w sink) Jo(@)e
pe s ® coshuw 0
. (4.11)
) = E _/”ng'n(wx)J( )
P =% "), @ coshuw
respectively. Here, we have defined the functidnand ® as follows
% dw e—ikw % dw e—\uw\e—ikw
Y(A) =i —_—— D) =i —_—— 4.12
) |[m w 2coshuw *) I/,oo w 2coshuw ( )
Using the functiong andzs thus obtained, we have
—212(kML = 2(L + 1) (pe(k™ — pe(0)) + W(sink™ — A" + w(sink" + 1M
+®(2sink™) + @ (sink™ + w(sink™ (4.13)
—272s(AML = 2(L + 1)(ps(A\") — ps(0)) + W (" — sink") + W (A" 4 sink")
—o@2M — oM + wih. (4.14)
Here, the equalities
27z¢(kML =0  (mod 2r) 21zcML =0 (mod 2r) (4.15)

hold since evaluation of each @f;. and Lz at a root of the Bethe ansatz equations yields
an integer by definition.

In accordance with Grisarat al's method [16], we evaluate the boundary phase shift
of the elementary excitations. We focus on the fact that the quantization conditions (see
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equation (1.13)),
2(L 4 1) pe(k") 4 yres(Sink™ — AN 4 L (k") + Pes(sink™ + AN + pR (kM) = 0

(mod 2r) (4.16)
2(L + 1) ps(A") 4+ Pes(A" — Sink™ 4+ 5 (A" + Yres(A" + sink™ + oR(A"M = 0
(mod 2r). (4.17)

Here, y.s denotes the phase shift of the holon—spinon scattering in the bulkqﬁ?spmnd
¢>§(S) denote the phase shift of the holon (spinon) at the left end and right end, respectively.
Comparing equations (4.13)—(4.15) with the quantization conditions (4.16) and (4.17),
we can recognize that the relationships
pe(sink) = (P (2sink) + (sink) + ¥(sink)) (4.18)
$s() = —3(P(20) + (L) — (1) (4.19)
hold apart from rapidity-independent additive constants, whege= & = ¢% and

¢s = oL = ¢R. Therefore, we can obtain the boundary scattering matrices for the charge
and spin sector, as follows

r(1—is)r(+ig) 2u
Ks(b) — @) — F(l_?%)r(%""?%) = i (4.21)
C(I+i4)T (5 -i5) 2

In these calculations, we can also rederive the scattering maydxfor the scattering of

the holon and the spinon in the bulk [13]. We can ideniify as ¥ to have
1+iexp(%2)

—i

1—iexp(%2)

Ses() = Vs = (4.22)

4.2. Attractive Hubbard model

In this section, we derive the boundary scattering matrices in the attractive Hubbard model
at the SO(4) point. For this purpose, we take the same method as that in the previous
section.

First, we assume that the solutions of the Bethe ansatz equations (1.4) and (1.5) (with
p1 = pr = 0) for u < 0 take the following string forms [16, 13].

(1) A-strings;n A,'s combine into a string-type configuration to take the form,

AT = A 4 i(n 41— 2))|ul j=1...,n a=1...,M,
with a real numben, apart from a correction of order& (3 > 0).

(2) k—A-strings; 2 k;'s andn A,’s combine into another string-type configuration and
take the following forms within the accuracy of(@?")(*s§ > 0),

AT = A i 41— 2))|ul j=1,...,n a=1... M

n

with a real numben’,, and
k: = sint (/% +injul)
k2 = sin YW 4+ i(n — 2)|u|) k3= — k2
k& =sin " 4 i(n — B |ul) k>=m —k?
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k2172 = sin"t (/" —i(n — 2)|ul) k2t = g — 22
k2t = sint (" —inful).

(3) Realk;'s which do not form the above string-type configurations. (Hereafter, we
describe only this kind of real elements {ik;} by the symbols;’s.)

If we introduce the numbed’ by M" = >">° nM/, the number of reak;’s is equal
to N — 2M’. We also find that the relationshig = Y>> nM, + Y -, nM, holds.

Within the above string ansatz [16, 13], we can rewrite the Bethe ansatz equation in the
following forms,

Mm I @ — i .
ikt ﬁ l_[e (smkj )J;;) . (smk, + KZ)
P mul m|ul
o M : /m : /m
sink; — A sink; 4+ A
X 1_[ l_[e ! Fle ! A (4.23)
m=1p=1 m|u| m|u|
, ( A ) N—ZM'e (Ag -~ sinkj> , (Ag +sink_,-)
nlul) 33 nlul nlul

oo M, )Ln _ )\m A _i_)\'m
=T () 2 () w28

exp(—i2(L + 1)(sin*(" +infu]) +sin ™t (X" — inul)))

_ ., ( A ) Nl‘—ZIM'e (A’Z - sinl<_,~> , (A’Z + sink_,-)
nlu| il nlu| nlu|
)\‘/i’l )\‘/m )\‘/Z +)\‘/gl
X 1_[ 1_[ Enm T Enm T (425)

m=1p=

—

apart from a correction of order& (35 > 0). The ground state corresponds to the case
with N =L, M;=L/2M,=0(r>1)andM, =0 (n > 2).

In order to calculate the boundary scattering matrices for the excitations in the charge
and the spin sectors, we consider the case Wita L —1,M; =L/2—-1,M, =0(@ > 1)
andM,, = 0 (n > 2) and introduce one hole in the charge sector and one particle in the spin
sector. In this case, we rewrite equations (4.23)—(4.25) to give

1 J
= = z1(kP 22— 250 4.26
I z1(k%) I 22(Aa) ( )
where
1 1 sink — Ag sink + g
2nz) =21+ > k- Yo (T2 ) 4o (- 0F
7a® <+L> Lﬁ;{ ( ul )+ < ul >}
1 sink — AP sink + A"
+= 9()+9(+> (4.27)
L |ue] |ue]

21 z0(1) = 2 <1+ i) (sin™ (x4 ijul) + sint(n — iju])) — 19 <’\“)

L\ |ul
1 A — sinkP A+ sinkP
-l — ) +O|—
L |ue |ue]
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(LY Ry At g
—=Y" 16 6
Lﬁ;{ < 2lul >+ < 2lul >}

) (5]

Here,I and{J,} (¢ =1, ..., L) take integers. One dfJ,} corresponds to the hole in the
charge sector anfl corresponds to the particle in the spin sector. We describe the rapidities
corresponding to the particle in the spin sector and the hole in the charge seétbabg

AN, respectively. In the present case, one quasiparticle exists in the spin sector with the
energye1(kP) and one quasiparticle exists in the charge sector with the ere(y) (see
equation (3.20)). Apart from the contributions less th#h,lwe obtain the following forms

27z1(k) = 2 (1 + 2) (pr(k) — p1(0)) + %(\I’(Sink — A" 4+ w(sink + A" + w(sink))
+%(<I>(sink — SiNkP) + ®(sink + sinkP) + ®(sink)) (4.29)
2mzo(A) = =2 (l + 1%) (p2(A) — p2(0)) — %(‘If(k — sinkP) + W (A + sink®) + W (1))

+%(c1>(x — M+ e+ AN+ o). (4.30)

Here pi(k) and p,(A) denote the momenta of the quasiparticle corresponding to the
elementary excitations in the spin and the charge sectors, respectively, which are defined
by [13]

_ ® dw sin(w sink) ul
) =k = /O w coshuw 2@°

 dw sin(wA) (4.31)

p2(d) = _/o ~ coshuw Jo(®).
Therefore, we have
2771 (kP)L = 2(L 4 1)(p1(k) — p1(0)) 4+ W(sinkP — AM) + w(sinkP + A"

+®(2sinkP) + ®(sinkP) + W (sinkP) (4.32)
—2125(AML = 2(L 4+ 1) (p2(A™) — p2(0)) + (A" — sinkP) + w (" + sinkP)

—o2m — oM +wah (4.33)
with
27z1(k° )L =0 (mod 2r) 2rz(ML =0  (mod 2r). (4.34)

We take the quantization conditions (see equation (1.13))

2(L + 1) p1(kP) + Y1a(sinkP — 1AM + @k (SinkP) + Yria(sinkP + 1M + pR(sinkP) = 0

(mod 2r7) (4.35)
2(L + D p2A") + Y120 — SinkP) + ¢5 (A" + Y120." + sinkP) + 50" = 0
(mod 2r) (4.36)
into account to read off the phase shifts from equations (4.32)—(4.34). We have
¢1(sink) = %(@(2 sink) + ®(sink) + W(sink)) (4.37)

$2(1) = —3(D(2) + D (V) — ¥(L) (4.38)
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(up to rapidity-independent additive constants), whgre= ¢t = ¢F and ¢, = ¢5 = ¢X.
Therefore, we can obtain the boundary scattering matrices for the spin and charge sector,
as follows

_ oo T+ (3 —i%) sink
K k) = el¢1(slnk) — 2 4 2 _ - 4.39
wsnb) ra-imrGeis) M Tae @
—jk 34k
Ko(h) = €92 = r fZ) r (:f +.' 2) w= e (4.40)
FA+i5Hr (3 —ik) 2lu]

respectively. In these calculations, we have also rederived the scattering nSagjixof
the scattering of the quasiparticles corresponding to the charge and the spin sectors in the
bulk [13]. We can identifyy;, as W to give

' 1+iexp( -
S1o(h) = V120 — —i“. (4.41)

5. Summary

In this paper, we have discussed the elementary excitations in the repulsive and the attractive
Hubbard models with boundaries at t® (4) point.

First, we derived the energy in the low-lying excited state where there exist quasiparticles
corresponding to the elementary excitations. The results thus obtained take different forms
from those of the periodic-boundary case only by a constant term. As is expected, each
of the quasiparticles in charge and spin sectors has the same energy as that in the periodic
chain.

Next we derived the boundary scattering matrices for the quasiparticles in charge and
spin sectors. We found that the boundary scattering matrix for the charge excitation with
u > 0 takes the same form as that for the spin excitation with 0, and the matrix for
the spin sector witht > O takes the same form as that for the charge sector withO.

These relationships may come from the fact that the transforma;tlona (=1)/¢;; yields
the changeH(u) — H(—u) at the SO (4) point and interchanges spin and charge degrees
of freedom.

The next step in our investigations may be to determine the boundary scattering matrices
for the Hubbard open chainith boundary fields. When we obtain the boundary scattering
matrices of the Hubbard modalith or without boundary fields, we expect to gain insight
into a number of physical properties, similarly to the case ofXtZ open chain [19-21].

For example, we can study the thermodynamics of a field theory describing the low-lying
excitations in the Hubbard model. The one-dimensional Hubbard model is recognized as a
lattice regularization of the&U (2) Gross—Neveu model, which is an integrable relativistic
field theory (see, for example, [22, 23]). A scaling limit yields the integrable field-theoretical
model with boundary interactions from the Hubbard open chain. Therefore, by taking an
appropriate limit of the boundary scattering matrices of the Hubbard open chain, we may
directly derive the matrices describing the boundary scattering [24] in the resulting field
theory. Using the scattering matrices thus obtained, we may derive the thermodynamic
Bethe ansatz equations for the free energy of the field theory with boundaries. It is known
that such a field theory with boundary interactions is closely related to one-dimensional
systems with impurities, which have attracted much attention recently (see, for example
[20,21]). Therefore, the boundary scattering matrices may also be useful to investigate
impurity problems.
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Such physical applications of the scattering matrices will be given in a separate paper.

Note added in proof After we submitted this paper, Tsuchiya [25] derived boundary scattering matrices for the
repulsive Hubbard model with the case-A boundary field. His results correspond to an extension of a part of our
results in this paper.

We have also determined boundary scattering matrices for the following four cases [26]:
e repulsive Hubbard model with the case-A boundary field;
o repulsive Hubbard model with the case-B boundary field;
e attractive Hubbard model with the case-A boundary field;
o attractive Hubbard model with the case-B boundary field.
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